
6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright  2002 – Alternative Technologies, All Rights Reserved

1

Enterprise Integrity: Why Declarative?

Vol. 4, No. 5

 Since my XML databases article (eAI Journal, October 2001), I‘ve received many letters

and emails indicating a surprising lack of understanding of (and considerable controversy over)

the concept of declarative languages. This month I’ll explain why the concept is so important

and what I mean by a purely declarative language.

 Clearly, computer systems require some form of physical implementation. This physical

implementation appears in many forms including, for example, the computer hardware used,

the physical organization of data, and the algorithms used to service some particular user

request. Though most of us realize that the physical implementation of a service is not the same

as the service, we often forget. As soon as we depart from a limited, pre-programmed servicing

of user requests, we have to provide access to a general purpose language for making requests.

 Most general purpose languages are non-declarative, so that the user must know

something about physical implementations and specify precisely how to accomplish each task.

If they need to access existing data, they will need to know how that data is physically

organized. Such languages have a procedural element to them, meaning that they must be able

to take advantage of order. (If that’s not obvious, try to imagine the concept of “next” or

“previous” data element without those elements being ordered. Then try to imagine completely

non-physical ordering.) Of course, the average user won’t know how to use the procedural

elements of a computer language.

 Non-declarative languages have three major problems. First, the more procedural the

grammar rules, the more difficult the language to learn even if the language is graphical

(consider modal versus non-modal graphical user interfaces). Second and closely related,

procedural elements tend to be used incorrectly much more often than non-procedural elements.

A number of studies in the 1950s and 1960s identified the most frequently occurring

programming errors. Elements having to do with order were the culprits: the exit conditions of

loops, if-then-else sequences, sorting routines, control transfers (“go to”), and the like. Third,

because procedural elements expose physical organization and structure to users, changes to

that physical organization and structure cause costly and error prone maintenance efforts.

 Consider the alternative, the creation of which was driven in part by consideration of

these issues. Suppose that users could concentrate simply on what they wanted to achieve rather

than on how to obtain it. They would simply declare the goal. This approach requires that the

system translate the goal declaration into a set of component procedures that can be invoked as

needed, and produce a result guaranteed to achieve the declared goal.

6221A Graham Hill Road, Suite #8001, Felton, CA 95018 Telephone: 831/338-4621 FAX: 831/338-3113

Page
www.AlternativeTech.com mcgoveran@AlternativeTech.com

Copyright  2002 – Alternative Technologies, All Rights Reserved

2

 Purely declarative languages need to be semantically rich so that users can accurately

express goals. Indeed, a declarative language is all about semantics or intended meaning. Since

we don’t have mind reading software that determines user intent, the language should be

ambiguous. The software that processes a declarative user request must encapsulate physical

data and hardware organization and the procedures that manipulate that organization. This

means the fundamental operations must preserve information integrity – information is never

augmented, altered, or lost except in ways that are specified explicitly by the user.

 When a language exposes physical data organization to the user, its declarative power is

degraded. For example, URLs are both hierarchical (and so have inherent order) and physical.

Worse, there is no semantic model by which a content goal (based on meaning) can be

translated into that physical location. XML and the languages and facilities that derive from

XML mimic this organization. Query languages for XML are replete with the language of

order: occurrences, sequences, paths, steps, descendants, children, and so on. Just because these

languages “have no procedures” doesn’t mean they are non-procedural (a naïve understanding

of “procedural”): if operation order changes results, the language is procedural. Even SQL now

has many procedural elements, its declarative power greatly diminished by the failure to

implement physical and logical data independence.

 Its not that procedural languages aren’t useful, but we should limit their use because of

the high price we must pay. We are now facing a future with high training and maintenance

costs. The next time you encounter a broken Web link or a page that no longer contains the

information pointed to, or have to change links or queries (whether SQL or X-Query) when you

reorganize your data, you can dream fondly of declarative languages. They can have a positive

impact on your enterprise integrity.

.

